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The objective of this paper is to assess the reliability and effectiveness of the method of finite spheres, a
truly meshless overlapping finite element method, for the solution of practical three-dimensional linear
elasticity problems. Advantages include simplified discretization and the elimination of element distor-
tion. The method is implemented in the ADINA finite element program through a user-supplied element
subroutine. The solutions of three increasingly complex three-dimensional problems are studied (1) to
establish the reliability of the method for practical linear elasticity problems and (2) to assess the effec-
tiveness of the method as compared to the standard finite element method. The solutions indicate that
the method of finite spheres is between one and two orders of magnitude more expensive in computa-
tional time than the standard finite element method. This is still a promising result since there are
significant time savings for the method of finite spheres during the pre-processing phase, particularly
in the discretization of complicated three-dimensional geometries and because the overlapping sphere

elements can be directly coupled to traditional finite elements.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The method of finite spheres is a truly meshless overlapping
finite element method developed to overcome the challenges in
mesh-based numerical methods. In the finite element method,
challenges include mesh generation for geometrically complex
domains, avoidance of severe element distortions, and mesh align-
ment and refinement for modeling problems with discontinuities
and singularities [1]. Mesh generation is time-consuming and
requires special attention to remove distorted elements, especially
for complex three-dimensional domains. Element distortion causes
a loss of predictive capability since the element is no longer able to
represent the same order of polynomials, leading to inaccuracies in
numerical integration and an overall loss of reliability and solution
accuracy [2]. In the method of finite spheres, overlapping sphere
elements simplify the discretization of complex three-
dimensional domains and eliminate the risk of distorted elements.

The challenges in mesh-based numerical methods have attracted
substantial research efforts, leading to the development of numer-
ous meshless methods [3-5]. Some of the most prominent meshless
methods include smoothed particle hydrodynamics (SPH), the
diffuse element method (DEM), the element-free Galerkin method
(EFG), and the meshless local Petrov-Galerkin method (MLPG).
The method of finite spheres (MFS) inherently possesses the
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advantages of meshless methods, and can also be thought of as a
reliable and efficient finite element method using overlapping
elements.

Smoothed particle hydrodynamics, one of the earliest develop-
ments in meshless methods, was originally used to model astro-
physical phenomena. The method has since been implemented
for a wide range of practical engineering applications, predomi-
nantly in the area of computational fluid dynamics, but also with
extensions to solid mechanics. Despite the inherent advantages
of being a meshless Lagrangian particle method, SPH possesses
some numerical complications such as tensile instability and spu-
rious boundary effects, which can lead to poor accuracy in the solu-
tion. Furthermore, generally a large number of particles and the
use of adjustable solution factors are required to obtain reasonable
accuracy, reducing the efficiency and robustness of the method.
Several modifications and corrections have been proposed to
restore consistency and accuracy of SPH, but further research
efforts are necessary before the method can be regarded as robust
and efficient for practical applications [6,7].

The diffuse element method was the first of many meshless
methods based on the Galerkin formulation. The method uses
moving least squares (MLS) to generate smooth approximations
based on a set of discretization points. Since DEM is a global weak
form method, a background mesh is required for numerical
integration, suggesting the method is only meshless with regard
to constructing interpolation functions. Furthermore, there are a
number of oversimplifications which affect the validity of the
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method. In particular, the derivative of the approximation functions
is evaluated only approximately, a very low quadrature rule for
numerical integration is applied, and the Dirichlet boundary condi-
tions are not accurately enforced. Consequently, DEM does not pass
the patch test and fails consistency requirements [8].

The element-free Galerkin method is an extension of DEM,
introducing a series of improvements which results in a more accu-
rate formulation at the expense of increased computational cost.
Specifically, EFG correctly evaluates the derivatives of the approx-
imation functions, employs a larger number of integration points
in the numerical integration procedure, and utilizes Lagrange mul-
tipliers to accurately enforce the Dirichlet boundary conditions.
The EFG method also uses MLS approximations to construct the
trial and test functions which provides reasonable accuracy, but
requires an expensive matrix inversion at every integration point.
Furthermore, there is an additional condition that at every integra-
tion point there is a minimum number of domains of influence that
must have nonzero support. These complications concerning
matrix inversion and overlap significantly reduce the computa-
tional efficiency of the method [9-12].

The meshless local Petrov-Galerkin method is a concept that
can adopt trial and test functions from different approximation
spaces, resulting in various formulations which offer flexibility to
deal with different boundary value problems. Various formulations
of the MLPG approach have been used to solve three-dimensional
elastostatics problems, using different test functions, such as the
Heaviside function or the Dirac delta function, and different
approximations, based on radial basis functions or moving least
squares. Unlike DEM and EFG, the MLPG method works with a local
weak form instead of a global weak form, which means that
numerical integration is performed over local subdomains rather
than using a background mesh or cell structure. Therefore, it is a
truly meshless method since a mesh is not required for either
interpolation or integration. However, with the approximation
functions based on the MLS approximation, the method suffers
from the same complications as DEM and EFG [13-15].

Although a variety of meshless techniques have been devel-
oped, the currently available reliable methods are much more
expensive than the finite element method and come with various
complications that affect their overall effectiveness. The method
of finite spheres incorporates advantages of the finite element
method and meshless methods and focuses on being both reliable
and computationally efficient. Early research demonstrated the
reliability of MFS for one- and two-dimensional linear analysis of
solids and fluids. Further research established a mixed displace-
ment/pressure formulation, improved numerical integration, finite
element coupling, enrichment strategies, automatic discretization,
genetic algorithms for numerical integration, and a scheme for the
analysis of wave propagation problems [16-25].

The focus of this paper is on assessing the reliability and effi-
ciency of the method of finite spheres for the analysis of practical
three-dimensional linear elastic problems, where the traditional
finite element method suffers from costly mesh generation and
errors resulting from element distortions. In Section 2, we develop
the theory and formulation of the method of finite spheres and
present an effective local approximation space for constructing
three-dimensional interpolation functions. Thereafter, in Section 3,
we propose a simple numerical integration scheme known as the
piecewise Gauss-Legendre quadrature rule for the integration of
the nonpolynomial functions over the three-dimensional spherical
domains. In Section 4, we discuss our implementation of the method
of finite spheres in a user element subroutine of ADINA. Then in
Section 5, we study the solutions of three increasingly more complex
three-dimensional analysis problems in order to establish the relia-
bility and assess the efficiency of MFS for practical linear elastic anal-
ysis. Lastly, in Section 6, we summarize the major developments and

discuss possible further research toward improving the efficiency of
the method.

2. Formulation of the method of finite spheres

In this section we present the theory and formulation of the
method of finite spheres for three-dimensional linear elasticity
problems. The presentation is largely based on Ref. [16].

2.1. Sphere discretization

Consider a general three-dimensional domain V with domain
boundary S=S, USy where S, is the Dirichlet boundary and Sy is
the Neumann boundary. The unit normal to the domain boundary,
n, is positive in the outward direction. Let {B(x,,r;); I=1,...,N}
be a set of spheres, where x; and r; refer to the center coordinates
and radius of sphere By, respectively, and where I is the nodal label of
each sphere and N is the total number of spheres. As illustrated in
Fig. 1, spheres can be classified as either an interior or boundary sphere.

The requirements for a valid sphere discretization are (1) all
sphere centers must be within the domain, (2) the domain must
be completely covered by the union of all spheres, and (3) no
sphere can be completely included in any other sphere. Discretiza-
tion depends only on the position vector and radius of the spheres.
With overlapping elements, the method of finite spheres avoids
discretization difficulties and element distortion.

2.2. Interpolation scheme

The interpolation scheme for the method of finite spheres is
based on the partition of unity paradigm [26-28]. Interpolation
functions are defined as the product of Shepard functions and local
basis functions. An effective local approximation space is chosen
for three-dimensional linear elasticity problems.

2.2.1. Shepard partition of unity functions
The Shepard partition of unity functions are given by

Zszl W] ’

where Wj(x) denotes a positive radial weighting function. The Shep-
ard functions are nonpolynomial and have zeroth-order consis-
tency, ensuring that rigid body modes can be reproduced exactly.
The choice of weighting function should consider the continuity
class and the ease of differentiation and integration so that low-
cost partitions of unity are obtained. We choose the quartic spline
weighting function defined as

1-6s24+8s3-3s%, 0<s<1
W1(5)={

P I=1,...,N (1)

0, s>1 @

where s = (||x — x/||)/r.

Boundary
Sphere

X u

Fig. 1. General three-dimensional domain V with domain boundary S=S,US.
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2.2.2. Approximation space

Since the Shepard partition of unity functions only satisfy
zeroth-order consistency, a local approximation space
v} = span,,;{p.(x)} is defined at each node I to generate approxi-
mation spaces of higher-order consistency, where h is a measure of
the sphere size, Z is an index set, and p,,,(x) is a member of the local
basis. The global approximation space Vj, is defined as the product
of the Shepard function and the functions from the local basis

N
V=2 @] 3)
=1
Hence any function v, in the solution space z;, can be written as
N
Un(%) = D> Y i (%) 0lim (4)
I=1 meZ

where the interpolation functions are defined as

hlm(x) = (P?(g)pm (K) (5)

and oy, is the mth degree of freedom at node I. For three-
dimensional linear elasticity problems, which are within the class
of elliptic problems, a suitable local approximation space is

Z,Xy,yz,ZX} (6)
which contains the terms of a complete first-order polynomial,
where X = (x —x;)/r;, Y=y —Y,)/n,and Z = (z — z) /1.

Unlike in the standard finite element method, an effective local
approximation space can be chosen for solving specific problems,
improving the accuracy and efficiency of the method of finite
spheres. For example, a local approximation space containing
trigonometric functions is suitable for hyperbolic problems, which
has been demonstrated for the dynamic analysis of wave propaga-
tions [25]. For the method of finite spheres, the choice of local
approximation space is significant because it is advantageous to
employ different interpolation functions for different classes of
problems.

VI = span{1,x,y,

2.3. Displacement-based method of finite spheres

In this section, we present the formulation of the displacement-
based method of finite spheres for three-dimensional linear elas-
ticity problems.

2.3.1. Governing differential equations
The governing differential equations for a linear elastic contin-
uum V € R? with domain boundary S are

T+ -0inV (7)
with Neumann boundary conditions

Nz =f*on S ®)
and Dirichlet boundary conditions

u=uonS, 9)

The strain-displacement relation is given by

&= 0:U (10
and the linear elastic constitutive relation is given by
T=Ce (11)

In Egs. (7)-(11), uis the displacement vector, ¢ is the strain vector, T
is the stress vector, f is the body force vector, f° is the prescribed
traction vector on the Neumann boundary S;, u® is the prescribed

displacement vector on the Dirichlet boundary S,, 9, is a linear

gradient operator, N is the direction cosine matrix for the unit

normal to the domain boundary (positive outwards), and C is the
elasticity matrix.

2.3.2. Variational formulation
For the linear elastic domain V € R, the variational indicator is

[T =3 fy & @Cew)av — % (12)

where the term R accounts for the externally applied body forces,
surface tractions, and prescribed displacements, given by

_ TFB TS uT (7, 1S
ER_/Vg[dV+/g[dS+/u[ (u— u)ds (13)

S S

and the traction vector f* on the Dirichlet boundary may be
expressed as

= NGetw) 14

By invoking the stationarity of the variational indicator II in
Eq. (12), we obtain the following weak form:

Find u € H' (V) such that
Jye"(@)Ce(w)aV — [, [€"(v)CN"u + v"NCe(u)]dS

— [ PV + [, OfS— [. T (CNTISdS Vo e H'(V) )
vV L s 2L Su

where H'(V) is the first-order Hilbert space.

2.3.3. Nodal interpolations
For three-dimensional analysis, the displacement field approxi-
mation is

u

N
uXy,2) =4 v 3y => HulX,y,2)0 = H(x,y,2)U (16)
w J=1 nez

The corresponding strain field is

EXX

Eyy

&z

N
e(x.y.2) = =" Bu(x,y,2)n = B(x,y,2)U (17)

Yy =1 nez
Vyz
’yZX
and the corresponding stress field is

= iZ@Jn(x,y,Z)gjn =CB(x,y,.2)U (18)

T(x,y,2) = T
Xy J=1 nez

Tx

where U=[oq; 042 --- o ---]' is the vector of nodal
unknowns, oy, = [u/" /" wih] is the vector of nodal unknowns
at node J corresponding to the nth degree of freedom, and u’®, v/,
and w/'™ are the x-, y-, and z-displacements, respectively, at node J
corresponding to the nth degree of freedom.

The displacement interpolation matrix is

ha 0 0
ﬂ]n(XJ?Z) = 0 h]n 0 (19)
0 0 h,
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and the strain-displacement matrix is

r oy, 7
X O O
0 % o
Oy
B —O.H o 20
b (X7y7 Z) = Ueldn (X7 J/7z) | o Oy, ( )
ay  ox 0
oy Oy,
0 = %
i)"l_[n 0h]"
152 0 %

The elasticity matrix is given by

1 2 0 0 0
21 & 0 0 0
L L) N L (21)
=T 0+vd-20|0 0 0 5 0 0
0 0 0 0 J2 o0
(0 0 0 0 Jezs |

where E and v are Young's modulus and Poisson’s ratio of the
material, respectively.

2.3.4. Discrete equilibrium equations

By substituting Eqgs. (16)-(18) into Eq. (15), we obtain the
discretized system of algebraic equations corresponding to node I
and degree of freedom m

N
Zz&m]ngjn :[Im +-£Im (22)
J=1nez

where the stiffness matrix is

Ko = | BluCBndV (23)
1

and the body force load vector is

fim = ‘ Hinf?dvV (24)

4

with Vi=Vn B(&[, r,).
The traction force vector corresponding to node I and degree of
freedom m is

0, for an interior sphere
Zlm _ fs,, Hinf5dS, for a Neumann boundary sphere (25)

Z,N:l > nerKUimjn%n — fUim, for a Dirichlet boundary sphere

where

KUy = /S HynNCByudS + /S BT CNH,dS (26)

and

U = [ BcN'wds 27)
Uy

with S = Ujen, Sy, where Ny is the index set of nodes with nonzero
intercept on the Neumann boundary and S, = Uy, Sy, where Ny, is
the index set of nodes with nonzero intercept on the Dirichlet
boundary.

3. Numerical integration procedure

Numerical integration is a focal point of development for the
method of finite spheres and for meshless methods in general
[29-34]. Specialized integration schemes for the method of finite

spheres have been developed in one- and two-dimensions
[16-19]. In three-dimensions, the method requires integration of
nonpolynomial functions over complicated integration domains,
namely spheres, truncated spheres, and general lens-shaped
regions for the overlap of spheres.

3.1. Sphere integration domains

In the method of finite spheres, the types of sphere integration
domains encountered are classified as interior spheres, boundary
spheres, and sphere overlap regions. In Fig. 2, we show these
classifications, illustrating two-dimensional “spheres” or “disks”
for simplicity, though three-dimensional spheres are implied.

3.2. Piecewise Gauss-Legendre quadrature rule

The piecewise Gauss-Legendre quadrature rule is a simple
quadrature rule developed for the method of finite spheres. Each
sphere domain is divided along the coordinate axes into eight sub-
domains. The standard Gauss-Legendre quadrature rule is applied
in each of these subdomains, considering only the integration
points that lie in the intersection of the sphere and the problem
domain. The calculations are performed in the global coordinate
system to avoid additional computations when using the natural
coordinate system of a sphere element. Since the exact integration
of complex nonpolynomial functions is not possible, the goal is to
obtain a solution of sufficient accuracy using a minimum number
of integration points.

Advantages of the piecewise Gauss-Legendre quadrature rule
include a uniform density of integration points and direct integra-
tion of overlap regions. In the following sections we assume a
constant radius for all spheres and we describe the piecewise
Gauss-Legendre quadrature rule for each sphere integration
domain, where as before, three-dimensional spheres are repre-
sented by two-dimensional “sphere” illustrations.

3.2.1. Interior sphere

An interior sphere divided by the coordinate axes is illustrated
in Fig. 3. Within each subdomain, the standard Gauss-Legendre
quadrature rule is employed. For an interior sphere, all points
within the sphere contribute to the integration and are shown as
red' points. By dividing the integration domain, the complexity of
the integrand is reduced and accuracy is improved. Furthermore,
there is a uniform density of integration points throughout the inte-
gration domain.

3.2.2. Boundary sphere

In Fig. 4, a boundary sphere is depicted where the problem
domain is shaded in gray and the portion of the sphere which lies
in the domain is shaded in blue. A Gauss-Legendre quadrature rule
is considered in each subdomain, but only the integration points in
the intersection of the sphere and the domain, denoted by red
points, are used in the integration calculations.

3.2.3. Sphere overlap region

For a sphere overlap region, the same set of integration points
considered for the interior sphere or boundary sphere are used.
For example, we consider the sphere overlap region illustrated in
Fig. 2c with the coordinate system centered on the left interior
sphere, shown in Fig. 5. The standard Gauss-Legendre quadrature
rule is considered in each subdomain, and from this set of integra-

! For interpretation of color in Figs. 3-5, 14, 20, and 26, the reader is referred to the
web version of this article.
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(a)

(b)

(c)

Fig. 2. Sphere integration domains for the method of finite spheres: (a) interior sphere, (b) boundary sphere, and (c) sphere overlap region.

Fig. 3. Piecewise Gauss-Legendre quadrature rule for an interior sphere.
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Fig. 4. Piecewise Gauss-Legendre quadrature rule for a boundary sphere.
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Fig. 5. Piecewise Gauss-Legendre quadrature rule for a sphere overlap region.

tion points, integration is performed using the subset of points in
the sphere overlap region, indicated by red points.

Of course, there are multiple sphere overlaps for this interior
sphere of interest, and each sphere overlap region considers a
different subset of integration points and yields a unique nonzero
sphere stiffness matrix. For a uniform arrangement of spheres in
all directions, an interior sphere would have 26 overlap regions.

4. Implementation of the method of finite spheres

For the evaluation of the method of finite spheres, the proce-
dure has been implemented in the user subroutine of ADINA.
Therefore, the study is based on using the same sparse equation
solver for the finite element method and the method of finite
spheres and we can draw some valuable conclusions regarding
the efficiency of the method.

4.1. Three-dimensional sphere element

For the displacement-based finite element method, we have
three translational degrees of freedom per node, as shown in
Fig. 6a. For the method of finite spheres, we have 3m degrees of
freedom per node, as shown in Fig. 6b, where m is the number of
terms in the local approximation space.

For three-dimensional linear static problems, a suitable local
approximation space was given in Eq. (6). The local basis includes
one constant term, three linear terms, and three quadratic terms,
as shown in the Pascal pyramid in Fig. 7. Therefore, since m=7,
the sphere element has 21 nodal degrees of freedom.

We will compare solution times between the finite element
method and the method of finite spheres for the three-dimensional
linear elasticity numerical examples in Section 5. For the finite
element solution, we use the 8-node linear brick element, and for
the finite spheres solution, we use the linear sphere element, both
of which are illustrated in Fig. 8. With three degrees of freedom per
node in the finite element method, the linear brick element has a total
of 24 degrees of freedom. In the method of finite spheres, the linear
sphere element has a total of 21 degrees of freedom since the nodal
degrees of freedom are the local element degrees of freedom.

For the method of finite spheres, the global structure stiffness
matrix is a banded matrix with contributions from interior spheres,
boundary spheres, and sphere overlap regions. A typical layout of
the global structure stiffness matrix for the method of finite
spheres is illustrated in Fig. 9, where the square matrices along
the main diagonal correspond to the sphere element itself, either

an interior sphere or a boundary sphere, e.g., K, and the square
matrices not along the main diagonal correspond to sphere overlap
regions, e.g., K, which are nonzero only when the spheres corre-
sponding to nodes I and J overlap. The system of equations is
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Fig. 6. (a) Finite element nodal degrees of freedom and (b) finite sphere nodal degrees of freedom.

solved in the same manner as in the standard finite element
Constant term: 1 method.

4.2. Implementation in ADINA

A flowchart of the implementation of the method of finite
spheres in ADINA is shown in Fig. 10. The first step is to read the
“““ Quadratic terms: 3 nodal point data (number of nodal points, coordinates, radius,
and essential boundary conditions) and element data (natural
boundary conditions and material properties) from an ADINA data
file. This data file is very similar to the one used for a finite element
analysis, except that we no longer require a connectivity array
relating the assemblage degrees of freedom to the element local

Tz T 36,...,21

Fig. 7. Pascal pyramid representing the terms in the local approximation space for
the sphere element.
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Fig. 8. (a) Linear brick element and (b) linear sphere element.

" .¥ Sphere overlap region

Interior/boundary sphere

Fig. 9. Typical layout of structure stiffness matrix for the method of finite spheres.
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ADINA Data File (.dat)
* Nodal point data (NUMNP, COORD, R, EBC)
* Element data (NBC, E, v)

:

DOI =1, NUMNP N

:

MFS User-Supplied Element Subroutine (.f)
* Element stiffness matrix (Ke)
* Element load vector (&)

|

Assemble structure matrices (K, R)

l

Solve KU =R

Fig. 10. Flowchart of method of finite spheres linear static analysis in ADINA.

degrees of freedom. The program then loops over every sphere for
its element matrices to be assembled into the global structure
matrices, where the element matrices already calculated are
directly used or new element matrices are calculated. The nodal
unknowns can then be determined by solving the system of equa-
tions using the ADINA equation solver. Post-processing of these
results provides displacements, strains, and stresses throughout
the problem domain. The complete process is like in a traditional
finite element analysis.

5. Numerical results

In this section we consider the solutions of three increasingly
more complex three-dimensional analysis problems and compare
the solution times used in the standard finite element method
and the method of finite spheres. In each case, we use the finest
mesh finite element solution as the reference solution for
comparison.

5.1. Problem 1: short cantilever beam with square solid section

We consider the short cantilever beam problem shown in
Fig. 11.

The problem is solved using three discretizations for both the
method of finite spheres and the finite element method, as shown

200 N/mm

in Fig. 12. For each sphere discretization, the sphere arrangement is
uniform with equal radius size. For the finite element method, we
use a sequence of uniform meshes consisting of 8-node linear brick
elements. The mesh refinement involves subdividing each brick
element into eight brick elements so that the coarser mesh will
be embedded in the finer mesh, so we expect monotonic conver-
gence [1].

The results for the MFS and FEM discretizations are given in
Table 1. All three MFS discretizations provide results with strain
energy errors within 9%. The time multiplier for MFS3 is 11.31,
corresponding to a strain energy error of 0.48% which is close to
negligible. We observe that a lower number of nodes can be used
in the method of finite spheres to obtain comparable accuracy with
the finite element method.

The convergence of strain energy for both methods is shown in
Fig. 13. We observe that for a radius size in the method of finite
spheres equal to element size in the finite element method,
the method of finite spheres provides better accuracy based on
the strain energy error norm with respect to the reference solution.
Another important observation is that the method of finite spheres
exhibits a similar rate of convergence (slope of convergence curve)
as seen in the standard finite element method.

The transverse displacement contour plot calculated using the
MFS3 discretization is shown in Fig. 14, with sphere centers
denoted by the red nodes.

The z-displacement results and the predicted longitudinal
normal stresses along Line 1, defined in Fig. 11, are shown in
Figs. 15 and 16, respectively. Good solution accuracy is observed,
except for (in this and the subsequent analyses) the nonphysical
stresses in the mathematical model at the end regions.

5.2. Problem 2: short cantilever beam with square hollow section

The next structure considered is the short cantilever beam with
a square hollow section, shown in Fig. 17.

The discretizations for the method of finite spheres and the
finite element method are shown in Fig. 18. To arrive at the dis-
cretization from the square solid section, we simply remove the
spheres that no longer are in the geometry domain of the hollow
section. As before, the discretizations for the finite element method
involve subdividing the 8-node brick elements into eight smaller
brick elements, with the finest finite element discretization used
as the reference solution.

The results for the MFS and FEM discretizations are summarized
in Table 2. All three MFS discretizations provide results with strain
energy errors within 7%. The time multiplier for MFS3 is 6.54,
corresponding to a strain energy error of 1.04%. For this problem

Section A-A

100

100
Units in mm

Fig. 11. Problem 1: short cantilever beam with square solid section.
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Fig. 12. MFS and FEM discretizations at Section A-A for Problem 1.

Table 1
Problem 1 strain energy errors and time multipliers for MFS and FEM discretizations
(as compared to FEM3 reference solution).

Number of ~ Number of degrees of  Strain energy Time

nodes freedom error (%) multiplier
MFS1 90 1890 8.19 0.08
MFS2 450 9450 2.83 0.37
MFS3 5082 106,722 0.48 11.31
FEM1 756 2160 3.55 0.01
FEM2 4961 14,520 1.06 0.04
FEM3 35,721 105,840 . .

2 FEM3: strain energy (N mm) = 2753.9; time (s) = 25.97.
-0.5
= _© MFS1

log |(E-E,)E
"

o
[
—

L5

28]

log (h)

Fig. 13. Problem 1 convergence of strain energy.

solution, the time multiplier indicates that the solution using the
method of finite spheres is about one order of magnitude slower
than the finite element method if a one percent strain energy error
is accepted as small enough, but between one and two orders of
magnitude slower if more accuracy is required using the method
of finite spheres.

The convergence of strain energy for both methods is shown in
Fig. 19. The method of finite spheres exhibits better accuracy
compared to the finite element method when equal finite sphere
and finite element sizes are considered. Furthermore, the method
of finite spheres exhibits a similar rate of convergence as the finite
element method, since the degree of polynomial completeness is
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Fig. 14. Problem 1 transverse displacement contour plot for MFS3.
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Fig. 15. Problem 1 transverse displacement along Line 1.

the same for both the linear sphere element and linear brick
element.

The calculated transverse displacement contour plot using the
MFS3 discretization is shown in Fig. 20, with sphere centers
denoted by the red nodes.

The transverse displacements along Line 1 (see Fig. 17) for the
hollow structural section are larger than for the solid section, as
expected, and the results using the two methods are in agreement,
as shown in Fig. 21. The predicted longitudinal normal stresses
along Line 1 are shown in Fig. 22, and again we see that the method
of finite spheres provides good results.
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Fig. 16. Problem 1 longitudinal normal stress along Line 1.

5.3. Problem 3: machine tool jig

The final problem we solve is the cantilevered machine tool jig
subjected to loading shown in Fig. 23. Due to the curved bound-
aries, discretization using finite elements is no longer as straight-
forward as for the previous two problems. This numerical

Table 2
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Problem 2 strain energy errors and time multipliers for MFS and FEM discretizations
(as compared to FEM3 reference solution).

Number of ~ Number of degrees of Strain energy Time

nodes freedom error (%) multiplier
MFS1 80 1680 6.87 0.68
MFS2 288 6048 4.04 2.38
MFS3 3024 63,504 1.04 6.54
FEM1 840 2400 4.81 0.01
FEM2 4920 14,400 1.52 0.05
FEM3 32,400 96,000 -2 -7

2 FEM3: strain energy (N mm) = 4096.9; time (s) = 11.64.

example was obtained from an in-depth study of the solution of
the problem using different hierarchical models from a beam
model, to a shell model, to the three-dimensional elasticity model
[35].

The discretizations for both methods are shown in Fig. 24. The
method of finite spheres discretization for the problem solution
is obtained from the discretization used in Section 5.2, by removing
the spheres that have center coordinates in the volume of the

Section A-A l
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Fig. 17. Problem 2: short cantilever beam with square hollow section.
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Fig. 18. MFS and FEM discretizations at Section A-A for Problem 2.
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Fig. 20. Problem 2 transverse displacement contour plot for MFS3.

machine tool jig cutout. As in the previous solutions, the finite ele-
ment discretizations use the 8-node brick element, and each mesh
refinement involves subdividing a brick element into eight smaller
brick elements.

The results for the MFS and FEM discretizations are summarized
in Table 3. For this problem solution, strain energy errors are
within 30%, much larger than in the previous numerical examples.
The coarse MFS discretizations do not accurately capture the stiff-
ness of the structure leading to inaccurate displacements and large
errors in the strain energy. The strain energy error for MFS3 is
4.27%, corresponding to a time multiplier of 7.59. Hence the solu-
tion time for the method of finite spheres is for this problem
between one and two orders of magnitude larger than when using
the finite element method for the same level of accuracy.

The convergence in strain energy for both methods is shown in
Fig. 25.

The transverse displacement contour plot predicted using the
MFS3 discretization is shown in Fig. 26.
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Fig. 21. Problem 2 transverse displacement along Line 1.
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Fig. 22. Problem 2 longitudinal normal stress along Line 1.

Fig. 27 shows the z-displacement results for the method of
finite spheres along Line 1, defined in Fig. 23. The predicted longi-
tudinal normal stress results by both methods are also in agree-
ment, as shown in Fig. 28.

For the machine tool jig problem, we next show a comparison
between the method of finite spheres and the finite element
method using the 27-node element. For the three FEM discretiza-
tions, the 8-node finite element is simply replaced by the
27-node finite element, with the finest discretization used as the
reference solution. The results for the MFS and FEM discretizations
are summarized in Table 4. Since the 27-node element reference
solution is more accurate than the 8-node element reference solu-
tion, strain energy errors for the method of finite spheres are
slightly larger. However, time multipliers are drastically reduced
since the solution time for the 27-node element reference solution
is roughly 150 times longer than for the 8-node element reference
solution. MFS3 has a strain energy error of 5.82% corresponding to
a time multiplier of 0.05. Computational efficiency comparisons

Section A-A
|| y 30
40
+30
DA [ T— i P
15 70 15
Units in mm

Fig. 23. Problem 3: machine tool jig.
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Fig. 24. MFS and FEM discretizations at Section A-A for Problem 3.
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Fig. 26. Problem 3 transverse displacement contour plot for MFS3.

2 FEMS3: strain energy (N mm) = 10352.9; time (s)=1371.97.
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should be for the same level of accuracy, and by extrapolation we
find that the method of finite spheres solution is around one order
of magnitude slower than the finite element solution. However,
here we used the linear sphere based on Eq. (6) and another com-
parison would involve the full quadratic terms in the local approx-
imation space of the method of finite spheres.

The convergence in strain energy for the method of finite
spheres and the finite element method using the 27-node element
is shown in Fig. 29. In contrast to previous examples using the
8-node finite element, the finite element method is more accurate
than the method of finite spheres for equal element size to radius
size. This is expected since the 27-node element has polynomial
completeness of degree two while the linear sphere element has
polynomial completeness of degree one. Therefore, also a higher
rate of convergence is observed for the 27-node finite element
results.

The transverse displacement and longitudinal normal stress
results are shown in Figs. 30 and 31, respectively. The transverse
displacement results of the MFS3 solution differ slightly from the
reference solution. The longitudinal normal stress results are in
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Fig. 29. Problem 3 convergence of strain energy with 27-node finite element.

_ 0.00 geseecc:
g -020
= -0.40
2}
3 -0.60
(=]
o~
= -0.80
&
A -1.00 i -
. —FEM3 o MFS3

-1.20

0 100 200 300 400

y - Coordinate (mm)

Fig. 30. Problem 3 transverse displacement along Line 1 with 27-node finite
element.

150

—_— - y(JuQ ~ '
< 100 7 R
% (oo t-'r‘-"ﬂ . L‘)'Q Q 1‘
- 50 b 0 Q “,
= QQ 5
- Q. T
1 Q 5
@ 0 Q Q. /d,o &
@ Q O Pl
§= -50 Q «}43.\-"3‘[:'\
78] - 2 )
——FEM3 o MFS3
-100 : - - :
0 100 200 300 400

y - Coordinate (mm)

Fig. 31. Problem 3 longitudinal normal stress along Line 1 with 27-node finite
element.

agreement, but unlike the results with the 8-node finite element,
there are no stress discontinuities using the 27-node element.

Based on the analysis of the machine tool jig problem, the
method of finite spheres is capable of obtaining an accurate solu-
tion, with computational times between one and two orders of
magnitude slower than the finite element method based on the
8-node finite element, and computational times around one order
of magnitude slower based on the 27-node finite element.

6. Concluding remarks

The objective of this paper was to assess the reliability and effi-
ciency of the method of finite spheres for the solution of three-
dimensional linear elasticity problems. We presented the basic
theory and formulation used and then obtained solutions using
the method of finite spheres for comparison with the traditional
finite element method. For these comparisons, the method of finite
spheres was implemented in the user subroutine of the program
ADINA.

The solution time comparisons showed that the method of
finite spheres is about one to two orders of magnitude slower than
the finite element method. However, for the numerical examples
studied, the discretizations of the domains were based on a regular
arrangement of spheres with identical element stiffness matrices
for certain spheres. We used this attribute to calculate the element
stiffness matrices for unique spheres only once for the assembly of
all such sphere contributions in the structure stiffness matrix. Of
course, this is only possible in linear analysis, and when many
identical spheres are used.

Based on our research, the method of finite spheres is a promis-
ing method for the solution of three-dimensional linear elasticity
problems. Advantages of this formulation include avoiding mesh
generation and element distortion. However, additional research
is needed to enable greater computational efficiency. One area that
is particularly suitable for improving the efficiency of the method
is distributed memory parallel processing. Sphere element stiffness
calculations are the primary computational cost for the method of
finite spheres, but these calculations can be performed indepen-
dently. By allocating spheres to multiple cores, more computations
can be performed in parallel leading to faster solution times as well
as more efficient memory usage. Furthermore, having emphasized
that the method of finite spheres is essentially an overlapping
finite element method, it is important to note that the method is
a particularly attractive meshless method for coupling with the
finite element method, as has been shown for two-dimensional
problems [20,23]. The basic idea is that the finite spheres can be
used within a standard finite element analysis as another element
type, employed in regions that are difficult to mesh or in the new
meshing scheme detailed in Ref. [36].
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